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A direct integral method is presented for the calculation of incompressible turbulent 
three-dimensional boundary layers in axisymmetric walls. An inviscid throughflow program 
was combined with the boundary-layer calculation method to predict swirling flows in 
annular diffusers. Comparison between theoretical and experimental results indicates that 
predictions can be made in a great variety of boundary-layer flows with interest in 
turbomachinery. A design criterion based on boundary-layer development was used to 
compute the wall shape of axisymmetric diffusers. 

Keywords: fluid flow; diffuser; boundary layer 

In t roduct ion 

The purpose of a diffuser is to decelerate the flow and convert 
kinetic energy into pressure. The main parameters to be 
considered in its design are cross-sectional geometry; shape and 
size of boundary layers and main flow direction at inlet cross 
section; length; wall shape; and inlet-to-outlet cross-sectional 
area ratio. The design of a diffuser is conditioned primarily 
by boundary-layer separation. Experimental data show that 
maximum pressure recovery is attained with incipient stall at 
exit. t-3 Care must be taken to avoid large detached regions 
that would reduce the diffuser effectivene~ creating unsteadi- 
ness and asymmetries. Hence, an accurate boundary-layer 
prediction method is required in the design of efficient diffusers. 

The prediction of flows without swirl in axisymmetric 
diffusers has been the object of theoretical investigations using 
direct 4,s and inverse 2'6 methods. These methods employ two- 
dimensional (2-D) boundary-layer calculations combined with 
inviscid throughflow methods. The presence of swirl in the 
external flow produces three-dimensional (3-D) boundary layers 
like the end-wall boundary layers encountered normally in 
turbomachinery.7-1° 

This article presents a direct integral method for the calculation 
of incompressible turbulent 3-D swirling boundary layers in 
axisymmetric walls. This method is an extension to three 
dimensions of the integral methods developed for 2-D boundary- 
layer calculation. An orthogonal coordinate system is defined 
in the meridian plane, and the following four differential 
equations are solved: (1) the tangential and meridional momen- 
tum integral equations; (2) an equation for the wall shear stress; 
and (3) an entrainment equation. The boundary-layer calculation 
needs, as input, the values of velocity and direction of the 
external flow. These are computed by an inviscid throughflow 
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program based on the streamline curvature method. H-13 An 
iterative procedure is used to displace the annular walls to 
account for the boundary-layers blockage effect. A design 
criterion based on the boundary-layer development is then 
considered in order to allow the computation of the walls shape 
of axisymmetric diffusers. The accuracy of the boundary-layer 
calculation method is assessed by applying it to some test cases 
for which a sufficiently complete set of experimental data could 
be found in the literature. 

The boundary- layer  method 

The deflection of a rotational flow produces the development 
of the streamwise component of vorticity, and this generates 
the secondary flow. This type of flow is particularly important 
in turbomachinery, where the boundary layers that grow on 
the casing and hub walls are deflected by the stationary and 
rotating blades. Figure 1 shows a typical 3-D boundary-layer 
velocity profile. Superposed on the main flow is a secondary 
flow in a direction normal to the free stream. At the wall the 
flow obeys the nonslip condition. 

We consider an orthogonal coordinate system (m, 0, n), 
where m is measured along the projection on the meridian plane 
of the external streamline at the edge of the boundary layer, n 
is measured along the direction normal to m on the same plane, 
and 0 is the circumferential angular coordinate (Figure 2). We 
consider the flow to be axisymmetric and assume the boundary- 
layer thickness 8 to be always small in comparison with the 
radius R of the wall surfaces. If we further consider the usual 
boundary-layer assumptions and perform the integration of the 
m and 0-momentum equations with respect to the direction 
normal to the wall, we obtain 14 

the m-momentum integral equation 

dm C,. dm (20.,m+~*)+ +K.  O.,m 
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Here the displacement and momentum thicknesses are defined 
as follows: 
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Figure 2 Coordinate system 
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and the O-momentum integral equation 

dOom t a n # d  (b_6, )+f2  sin2 2 dC.'~ 
dm dm k R + K ' + ~ m ) O ° m  

(1) 

C,. and Co are the m- and 0-components of the mainstream 
flow velocity Cs at the edge of the boundary layer, and Vm and 
v0 are the velocity components, in m and 0 directions, within 
the boundary layer. The quantity # = arctan(Co/Cm) is the angle 
between the streamlines at the edge of the boundary layer and 
the meridian plane, and K. is the curvature, at the edge of the 
boundary layer, of the line orthogonal to the projections of the 
streamlines on the meridian plane (and along which the 
coordinate n is measured). From the definition of curvature, is 
it can be easily found that 

K. = tan 2 d2 
dm 

since (dr/dx)m = tan 2, where 2 is the angle of the m direction 
with the axis of symmetry (Figure 2). In the particular case of 
diffuser flows, d2/dm is generally small, and terms K. in 
Equations 1 and 2 may be ignored. The wall shear stress z~ 
makes an angle % with the free-stream velocity and is positive 
if it opposes the main flow direction. It is worth noting that 6* 
and Ore,, have the usual meanings of deficit of flow rate and 
momentum, while the same is not true for 00m and 000. In fact 
the latter, as are defined here, represent not a deficit but the 

N o t a t i o n  
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Coefficients in differential equations 
z~./(X2pC~), friction coefficient 
Components of C5 in (m, 0, n) directions 
Streamwise velocity at the edge of boundary 
layer 
(%1p)1/2, friction velocity 
Entrainment rate 
Boundary-layer functions 
6*/0,, shape factor 
0.40, constant of Coles' velocity profile 
Curvature of the lines n = const., m = const., 
respectively 
Diffuser length 
Coordinate system (Figure 2) 
Cylindrical coordinate system 
Curvature radius of streamlines 
Wall radius 
Inviscid flow boundary radius at tip and 
hub, respectively 
Coordinate system (Figure 1) 
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Velocity components in (m, 0, n) coordinates 
Velocity components in (s, p, z) coordinates 

Boundary-layer thickness 
Displacement thickness 
Arctan(vp/V,), angle between local flow 
direction and free-stream direction 
Angle between wall shear stress direction 
and free-stream direction 
Momentum thickness 
dr/din (Figure 3) 
6*/6, shape parameter 
Arctan (Co/Cm), angle between the 
streamlines at the edge of the boundary 
layer and the meridian plane 
Kinematic viscosity 
Coles' wake parameter 
Density 
Wall shear stress 
(%/pC~) 1/2, dimensionless friction velocity 
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momentum in the 0 direction. This explains why the wall shear 
stress terms have different signs in the two momentum equations. 

The functions/t(m), 3.(m), C,(m), and R(m) that characterize 
the external flow and the wall geometry can be considered as 
input to our boundary-layer calculation. In this case, the 
unknowns in Equations 1 and 2 are 6, ~ ,  e~, and the four 
integral parameters. 

To solve these equations, assumptions need to be made about 
the shape of the streamwise and secondary flow profiles, v~(z) 
and vp(z), in order that displacement and momentum thicknesses 
may be calculated. The Coles' velocity profile t6 was taken to 
describe the streamwise velocity: 

C , - k  \ ~ - j  ~ 1 - - c o s ~  + C  (4) 

where C, = (zw/p) ~/2 is the friction velocity, H is the Coles' wake 
factor, k and C are universal constants, v represents the 
kinematic viscosity, and z is the coordinate perpendicular to 
the wall. This profile was checked with a variety of measured 
profiles in turbomachinery and was found to show a fairly good 
fitting to the experimental streamwise velocity profile, s'~7 

A variety of family profiles has been proposed to describe 
the cross-flow. ~° The Prandtl-Mager profile introduces only 
one extra parameter (the angle e~): 

, (l ; /  - - = t a n  ~=tan ew (5) 
Vs 

where e is the local angle between the flow direction and the 
free-stream direction, and e~ is the limiting value of e when 
z--* 0, i.e., the angle between the free-stream direction and the 
wall shear stress (Figure 1). This parameter indicates the 
importance of the secondary flow in comparison with the main 
flow. 7 

The expressions of integral parameters (Equations 3) can now 
be derived by performing the integrations analytically. For each 
of these parameters, a solution is obtained in terms of 6, H, e~, 
and the wall shear stress coefficient to: 

= ~ , ~ ]  = \ ~ - ]  (6) 

These calculations were first performed in the orthogonal 
coordinate system (s, p, z) of Figure 1 with the axis s in the 
direction of the streamwise velocity. The parameters 6*, 6p, 0~, 
0pp, and 0p= are defined as in the (m, 0, n) coordinate system 
(Appendix A). The results of the analytical integrations are 

,~* = to6G ~ 

0==~6(G1 -toG2) 

6* = 6 tan e~(1/3- toga) (7) 

0ps = 6 tan e~(1/3 - 2o~Ga + ¢-o2G,,) 

0~p = 6 tan 2 ew(1/5 - coG5 + to2G6) 

where G~, G 2 . . . . .  G 6 are functions of H given in Appendix A. 
We note that 

Cm = C~ cos # 

v. = vs cos # -  v~ sin # 

vo = vs sin # + % cos 

and so we relate the integral parameters of Equations 3 in 
the coordinate system (m, 0, n) to the integral parameters of 
Equations 7 in the (s, p, z) coordinate system as follows: 

6,~- 6, + g~ tan g 

0m= = 0,~ + tan #(20p~- 6" - 0~ tan g) (8) 

T. F. Morgado and L. M. C. Gato 

000 = (t~ - 6" - 0ss ) tan 2 ~ + 0pp + 20ps tan # 

00m--- ( 6 -  6~* - 0 ~ -  0pp) tan # + 0ps(l - tan 2 #) 

By introducing relationships 7 and 8, the momentum equations 
(Equations 1 and 2) may be expressed in the following form, 
in terms of 6, H, 09, and ew (Appendix B): 

d6 dH d~ dew 
a i - - + b i - - + c i - - + d i - - = f i  i=  1, 2 (9) 

dm dm dm dm 

Two additional equations are needed to solve Equation 9. 
The first one concerns the wall shear stress, which can be derived 
from Coles' profile taking z = 6  in Equation 4: 

1 _ 1 In t o + l  In C,6+ 21-I+ C (10) 
k k v k 

We recall that a~ (Equation 6) represents the dimensionless wall 
shear stress component in the streamwise direction s (Figure 1). 

To obtain the second equation, we will look for an empirical 
relationship describing the boundary-layer development. Follow- 
ing Le Balleur, ~s'19 we combine the continuity equation and 
the local m momentum equation, for n = 6, obtaining 

, l (11) 
dm Cm pC= L ~vJ~n J,=6 

A similar expression can be obtained for 2-D boundary layers? ° 
In fact, the left-hand side of Equation 11 is the entrainment 
rate E of a 2-D boundary layer on a flat plate: 

E = - -  - -  vm dn (12) 
C~ dm 

Equation 11 shows that the growth of 3-D boundary layers on 
an axisymmetric surface with variable radius is related to the 
turbulence properties at the boundary-layer edge through the 
streamwise velocity, C,, and can be modeled as for 2-D 
boundary layers on a flat plate. Equation 12, together with one 
of the following equilibrium entrainment relationships, is the 
last equation of the present method. 

Head 2~ assumed that the dimensionless entrainment rate can 
be taken as a function of the shape parameter H~ alone, 
H ~ = (6 - 6")/0~, and found the following empirical relationship 
for the 2-D boundary layer on a flat plate: 

E =0.0306(H 1-3.0)  -0.653 (13) 

Escudier and Nicoil, 22 based on the concept of effective viscosity 
in the wake region of a boundary-layer velocity profile, recom- 
mend 

0.15 
E = toll (14) 

k 

where co and H are parameters of the streamwise profile. 
Escudier and Nicol122 found that their relationship (Equation 
14) provides a slightly better agreement with experimental 
results than Head's relation (Equation 13). 

The entrainment rate will not be directly affected by t h e  
presence of the secondary flow. This does not contradict the 
principles of boundary-layer development, since the secondary 
flow vanishes at the interface with the external flow. The 
presence of the secondary flow is expressed in the momentum 
equations. Head's relationship has been used before in 3-D 
boundary layers 7 with Ht = (iS- t$*~)/0mM. 

Differentiating Equation 10 with respect to m and manipu- 
lating Equation 12, we obtain two more equations of the form 
of Equations 9. Expressions for coefficients a~, b~, c~, d~, f~, with 
i=  1, 2, 3, 4, are shown in Appendix B. 

The four equations can be solved by the Runge-Kutta 
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Figure 3 Streamlines of the meridian f low and geometry on a 
quasi-orthogonal line 

method. The necessary initial values of the four variables 
are obtained from the boundary-layer integral parameters 
(Equations 7). 

The inviscid method 

The procedure used for the calculation of the axisymmetric 
swirling core flow was the streamline curvature method with 
quasi-orthogonal lines. H-~3 These are straight lines that join 
the inviscid flow boundaries and are roughly perpendicular 
to the streamlines projected on the meridian plane (Figure 3). 

Assuming steady inviscid flow, without the presence of blade 
forces, the momentum equation can be written in the quasi- 
orthogonal direction q as follows: 12 

d 2 dH dS 1 d (r2v2) 
-~q(1/2vM)=~q-Tdq 2r 2dq 

- vZ~K= sin ~ + v .  - -  COS O~ 
dm 

(15) 

where H represents the total enthalpy, T the static temperature, 
S the entropy, K ,  the curvature of the meridional projection 
ofthe streamlines, and ~ the angle between the quasi-orthogonal 
line and the streamlines on the meridional plane (Figure 3). 

Equation 15 for the variation of v, along the quasi-orthogonal 
A-A' must be solved using a continuity equation in order that 
volume flow rate Q be conserved: 

fA t' 21rrvm ~ (16) sin dq=Q 

In duct inviscid flows, H, S, and the product rye are conserved 
along streamlines. This allows the computation of the distri- 
butions of these quantities along the quasi-orthogonal lines. 
The last two terms in Equation 15 (the streamline curvature 
terms) are obtained iteratively. 12 Starting from an initial guess 
of the stream surface shapes, streamline curvature terms are 
computed by a simple parabolic fit through three points to 
obtain streamline shape and curvature. Equations 15 and 16 
are then solved for each quasi-orthogonal line, giving the new 
vm distribution and hence the new points of intersection 
of the stream surfaces with the quasi-orthogonal lines. A new 
streamline pattern is then obtained, allowing the calculation of 
the new values of streamline curvature and slope. 

This method is valid for walls of revolution of arbitrary 
shape and imposes no limitations on the rotationality of the 
incoming flow. 

Design of axisymmetric diffusers 

The inviscid throughflow program computes the values of 
velocity and direction of the external flow needed for the 
boundary-layer calculation. An iterative procedure was used 
to displace the annular walls to account for the boundary-layer 
blockage effect. According to the present assumptions, the 
radius Rc of the inviscid core boundary is given by 

Rc = R _ 6*/cos 2 (17) 

where the plus and minus signs refer to the hub and tip walls, 
respectively. 

Having a calculation method for the entire flow, the question 
remains of what shape of diffuser walls will give the maximum 
static pressure recovery over a specified length. Kline and 
Strawn 2 propose a criterion for 2-D boundary layers based on 
the evolution of the shape parameter A = 6*/6. They suggested 

where subscripts 1 and 2 refer to the diffuser inlet and outlet 
cross sections, respectively, and showed that incipient detach- 
ment is obtained at the diffuser outlet with A2 =0.42 (the 
identical condition is proposed by Ahmed and Myring6). The 
exponent a defines the shape of the A(m) curve. Typical values 
of a lie between 1 and 3. 2 According to this criterion, highest 
efticiencies are obtained for high values of a and A2. The 
selection of high values of A2 will lead to boundary-layer 
conditions close to detachment at the exit of the diffuser. Hence, 
if high values are chosen for both the exponent a and A2, it 
follows that values of A o close to A2 will be obtained at sections 
far upstream from the diffuser exit. This is a dangerous design 
criterion, since it enhances the occurrence of stall if the real 
flow deviates slightly from the inlet design conditions. 

Although the Kline and Strawn criterion has been proposed 
for 2-D boundary layers, it is possible to extend it to the 
evolution of A, = 6*/6 in 3-D boundary layers if flow separation 
is not controlled essentially by the secondary flow. The adoption 
of this criterion is consistent with Coles' profile assumption for 
the external flow direction. 

, In the 3-D cases studied numerically by us, boundary-layer 
separation has been found for values of A,=0.25 to 0.3 lower 
than those that characterize the separation in 2-D boundary 
layers. However, these values change with the geometry and 
the importance of the secondary flow. The limit value of A2 to 
be adopted in the design calculations is chosen by studying the 
global behavior of the boundary-layer parameters. 

The design procedure follows the algorithm shown in Figure 4. 
We start with a first guess of a stall-free geometry. Inviscid flow 
calculation gives hub and tip evolutions of the external velocity 
at the edge of boundary layer (C=(m) and p(m)). Boundary-layer 
calculation provides the new distributions of 6* and A at the 
hub and tip walls. Equation 17 is then used to compute the 
inviscid core geometry. The following relationship between 
values of 2(m) at iterations n and n+ 1 is used to correct diffuser 
geometry, in order to approximate the calculated and desired 
A" and A o evolutions: 

2"+'(m)=2"(m)[ 1 T-a~( 1 -A'(m)~lA"(m)/.J (19) 

where a~ is a relaxation factor. To stabilize the iterative process, 
the shape of one of the walls is kept constant at each iteration. 
Finally, the diffuser length, L, is changed in order to achieve 
the required pressure recovery: 
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diffuser length = 

diffuser walls 
geometry 

inviscld core 
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calculation 

boundary-layer 
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adjust ~" 
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adjust A ~ 

1 
adjust pressure 
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Figure 4 Flow chart for design procedure 

where a~ is the relaxation factor for the changes in the diffuser 
length, and A x =  x ~ -  ~ is the difference of the kinetic energy 
fluxes calculated along the inlet and outlet quasi-orthogonal 
lines, 

~ R c l a  

x=Og (v~+vg)v= sin er dq (21) 
R e t  

We assume that the boundary layers are turbulent at the 
diffuser inlet, as is generally encountered in turbomachines. It 
is important to stress that the present method is particularly 
sensitive to the values of the inlet flow variables. The specification 
of inlet flow conditions will be based either on results of 
theoretical models for the flow upstream of the diffuser (if 
available) or on existing experimental data. 

In general, the flow on one of the diffuser annular walls will 
be less favorable than on the other one, and so the prescribed 
A~(m) will not be met simultaneously at the two walls. The 
design method ensures that Ap(m) is observed at the critical 
wall where the most adverse conditions take place. 

Results 

The boundary-layer method presented above was applied to 
two different test cases for which a sufficiently complete set of 
experimental data could be found in the literature. Figures 5 
and 6 show the calculated results in comparison with experi- 
mental values and theoretical results from other authors. To 
assess the sensibility of the method, results from the relationships 
of both Head ~ and Escudier-Nicol122 are shown for the test 
cases. 

Figure 5 shows the results of the method for the calculation 
of a 3-D boundary layer on a fiat plate. This simulation is 
possible in our coordinate system, since the direction of the 
pressure gradient is constant and 2 = 0  (Equations 1 and 2). 
Detailed measurements are available for this flow. 23-25 Up to 
x=0 .5  m, a good agreement is obtained between theoretical 
and experimental values for all boundary-layer parameters. 
Downstream of this section, 3-D separation occurs (/~ + ~w > 90°) 
for A ~ 0.25, and the boundary-layer development is found to 
be appreciably underestimated by the method. This behavior is 
typical of the direct methods. ~3-~ The theoretical calculation 
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of Cousteix and Houdeville, 2" whose results are also shown in 
the same figure, was performed by an inverse method, prescribing 
6* and 6* evolutions instead of velocity and direction of external 
flow. 

The second test case is the 3-D boundary layer measured by 
Gardow s in a radial vaneless diffuser. Results of Figure 6 show 

H" I  ' ' .'/~, eps . . . . . .  . A  s" . . . . .  

, 0  ~" 

~. /~  \ "  =° Y o,~o / /  \ \  

,.s , , , oo ' ' ' o ls , , , 

.z/, / - , 0  / , °  . ~  

~o 

X (ml  X (m) X (m) 

Figure 5 Three-dimensional boundary layer on a flat plate, under 
infinite swept-wing conditions. Comparisons between theoretical 
and measured values. ~ ,  experiment. Calculation: . . . .  , 3-D 
model with Head's equation; , the same, with Escudier-Nicoll 
relationship; . . . . .  , inverse method by Cousteix and Houdeville. 
Three-dimensional separation (/~ + ~,, = 90 °) occurs at x = 0.6 m 

oo  ( ~ ) *  8.0 , , , - -  

c / ° , k  * ' ' ~ 5 ;  . . . . . .  ~ O f '  °~ .., ~ ~ -  , , 

(. ;o3j t\ ',~ 

iii iii 
% . . . .  ~ 0., 0 . . . .  8 *'~ . . . . . . . . . . . . . .  " % ,  o[~ o'° 0'., °0  

r (m l  r (m)  r i ra)  

Figure 6 Three-dimensional boundary layer in a radial diffuser. 
Comparison between theoretical and measured values. @, experi- 
ment. C a l c u l a t i o n : - - - - - - ,  3-D model with Head's equation; -, 
the same, with Escudier-Nicoll relationship; . . . . .  , Ruyck-Hirsch 
model 
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Figure 7 Design example for an axisymmetric annular diffuser. The 
inner wall shape and the diffuser length were given. The outer wall 
shape is shown for two different prescribed evolutions of As=6*/6: 

, a=2; - - - - - - ,  a=0.6. (a) Outer wall; (b) inner wall. 

a fair agreement with experimental results, except for the Cy 
evolution, which has been underestimated by theory, and the 
ew evolution, which shows a less satisfactory agreement. Also 
shown in the same figure are the theoretical results of Ruyck 
and Hirsch s for the same example. 

We note that the comparison of the results plotted in Figures 
5 and 6 does not show clearly which of the two empirical 
relationships (Head's or Escudier-Nicoll's; see Equations 13 
and 14) is more adequate for general use in our method. In 
fact, better agreement with experimental results is shown in 
Figure 5 when Escudier-Nicoll's relationship is used, whereas 
Figure 6 indicates the opposite. 

Figure 7 shows the results of the application of the method 
described above to the design of an axisymmetric annular 
diffuser. As an example, free-vortex swirling flow was considered. 
Inlet flow conditions are shown in Table 1. A cylindrical inner 
wall was assumed and the diffuser length I was taken such that 
Uh = 2.7, where h is the difference between the inner and outer 
wall radii at the inlet cross section. Eleven meridional stream- 
lines and twelve quasi-orthogonal lines were considered for the 
inviscid core flow calculation. Two different evolutions of Ap(m) 
(Equation 18) were considered: the first one, with a = 2 ,  
corresponds to a strong pressure gradient at the beginning of 
the diffuser, where the boundary layer is in its healthiest 
condition; the second one, with a=0.6 ,  has a larger pressure 
gradient at the end of the diffuser. In both evolutions, A 2 = 0.3 
was adopted. About 20 iterations to correct diffuser geometry 
and 80 seconds CPU time on a VAX 6000-440 were needed to 
run these examples. 

Results show that diffuser design can be performed based on 
Ap evolution. As expected, in each of the tested cases, the 
development of the boundary-layer parameter A follows in a 
qualitative way the prescribed evolution of the shape parameter 
A r An identical pressure recovery was obtained in both designs: 
about 50% of the kinetic energy associated with axial velocity 
component. This indicates that in Equation 18, the choice of 

Table 1 Inlet flow conditions for the design example 

Inner wall Outer wall 

R [m] 0.2 0.3 
C0 [m/s] 30 20 
Cm [m/s] 30 30 
6 [mm] 11.4 11.4 

I-I 0.6 0.6 
~o 0.04 0.04 ~,, [°] - 5  - 5  

the value of A2 is more important than the choice of the value 
of the exponent a in givilag the shape of the Ap(m) curve. We 
recall that the calculated geometries of the outer wall, shown 
in Figure 7, are not substantially different from the conical 
shape, which is easy to manufacture. 

C o n c l u s i o n s  

A theoretical model for turbulent incompressible 3-D boundary 
layers in axisymmetric ducts has been developed. The com- 
parison between theoretical and experimental values shows a 
fair agreement for a variety of flows and geometries of practical 
interest in turbomachinery. A streamline curvature throughflow 
program was combined with the boundary-layer calculation 
method to predict swirling flows in annular ducts. The method 
proved to be suitable for diffuser design, since it allows a 
full control over boundary-layer development, although direct 
viscous coupling limit its use to attached boundary layers. In the 
design, inlet flow variables must be prescribed accurately. 
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Appendix A 

In the (s, p, z) coordinate system, the boundary-layer integral 
parameters are defined as 

6~ 
~*.= I "" az (A.1) 

JoCs 

o,,:L 
o,  : 

Jo \ c d c ,  

T. F. Morgado and L. M. C. Gate 

f o~ UP Bs Ops = --~T dz 
Cs 

We assume Coles' profile in the streamwise direction s (Equation 
4, with k=0.40)  and the Prandt l -Mager  profile (Equation 5) 
in the normal direction. Performing the integrations above 
(Equations A. 1) we obtain Equations 7, where 

l + F I  
G 1 - 

k 

1 
k2 (2 + 3.17871-I + 1.51-I 2 ) 

IF,,+(,+ 21r, l 
I 
k (0.6111 + 0.5360n) 

i f85 FII 2 f 

} 
I 

= #7 ( 1.5741 + 2.2221 rl + 0.9306112) 

1[-137 [2  8 48\i_i-[ 1 (0.9,33+0.7178ri) 
1 f12019 1-137 2 / 12 

G6=~ ~ +  L ~ + ~ 7  t .S i (n )+4  In . - ~ -  Si(n) 

2 6 2 4  ) ~ (  
- 5 + 4 7 - 4 C i ( n ) - ~ + ~ g S i ( n )  + 2 2 - 6  In 7z 

)] } +6Ci(n) -6?  H +  ~" 2 n 2 4 

1 
k2 (1.3354 + 1.7329H + 0.6608I-12) 

The functions St(z) and C~(z) are the sine and cosine integral, 2a 
and 7 = 0 . 5 7 7 2 . . .  is the Euler constant. 2a With G~=OGi/OH, 
we obtain 

G', = l t k  

G~ = (3.1787 + 3.0rl)/k: 
G~ = 0.5360/k 

G~, = (2.2221 + 1.8612H)/k 2 

G~ =0.7178/k 

G~ = (1.3729 + 1.3216II)/k 2 

Appendix B 

Equations 7 and 8 are used to derive expressions for the 
coefficients a ,  b~, c~, d~, f ,  with i =  1, 2, 3, 4, of the system of 
four equations solved in the boundary-layer method. The results 
are 

a 1 = co(G1 - (.oG2) q-- tan # tan ew(l/3 - 3coG3 + 2(02G,,) 

- t a n  2/t tan 2 sw(l/5-coG5 +(o2G6) 
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b t = ta6[(G~ - taG[) + tan/z tan e ~ ( -  3G~ + 2toG~) 

+ t a n  2/z tan 2 e~(G~-a~G~)] 

cl = 6[(Gl -- 2oJG2) + tan/~ tan e ~ ( -  G 3 + 2o~G4) 

- t a n  2/z tan 2 ew(G 5 -2o~G6) ] 

d 1 = 6 tan/~ sec 2 e~ [ (1 /3 -  3aJGa + 2~o2G4) 

+ tan /~  tan e ~ ( -  1/5 +~oGs - ~o2G6)] 

1 ~C=,20  6"" / s i n 2  \ 
f l  C .  ~m = - - -  , . . +  . ) - ~ - +  K.)O.,. 

_ s i n 2  (0ca-6  tan2 P ) +  co2 cos(e~+/t)  
R cos 2/~ cos gw 

- s¢c2  # dmm (20p,-20j,p t a n / ~ -  6*) 

a2 = - tan #I-a4 - 1 + o~(2G l - ~oG2) + tan 2 e~(1/5 - o~Gs 

+ oj2G6)] + (1 - t a n  2/~) tan t~(1/3 -2~oG 3 + ~2G4) 

b2 = - ~5  {tan iz[ 2 G'l -- toG'2 - tan 2 ew( G'5 - toG'6)] 

+ (1 - t a n  2 #) tan t~ (2G'a-  coG~,)}-b4 tan/~ 

c2 = - tan/~[c~ + 6(2G ~ - 2o~G 2 ) -  6 tan 2 ew(G 5 - 2toG6)] 

- 26 (1  - t a n  2/~) tan tw(G 3 -coG, , )  

d2 = ~ sec 2 ew[2 tan ew(1/5 - ~oG~ + ~o2G6) 

+ (1 - tan 2/t)(1/3 - 2coG 3 + ~o2G4)] - d~ tan # 

2 dCm sin 2 \  2 

.I"2 -- ~ cos 2 ~ cos ~,~ 
_ __~_m + K .  + 2 _~__)0om_ c ° sin(8.. + / 0  

[ 1 dC= sin 2"~ 

d/l --see2/'/dram (t~--6*s--Oss--Opp--2Ops t an / t  + tS* tan/~) 

a 3 = 1/t5 

b a = 2  

Ca = 1/o9 + k/to 2 

d3 = 0  

1 dC. 
f3 ~ - - - - - -  

C, dm 

a 4 = 1 -o9G1 - t a n / l  tan tw(1 /3 -  toGa) 

b4= - to6(G~ - t a n  # tan twG~) 

c4= - 6 ( G  I - t a n / t  tan ewGa) 

d4= - 6  tan/~ scc 2 e~(1/3- toGa)  

C,,, dm am 

Int. J. Heat and Fluid Flow, Vol. 12, No. 2, June 1991 157 


